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Abstract

The modelling of earthquake loads as design inputs for inelastic single-degree-of-freedom structures is considered. The

earthquake load is modelled as a deterministic time history which is expressed in terms of a Fourier series that is modulated

by an enveloping function. Subsequently, the coefficients of the series representation, and, the parameters of the envelope

function are determined such that the structure inelastic deformation is maximized subject to a set of predefined

constraints. These constraints include bounds on the total energy of the earthquake signal, peak values on ground

acceleration, velocity and displacement and upper and lower bounds on the Fourier spectra of the ground acceleration.

Additional mathematical limits on the envelope parameters are also considered. The quantification of these constraints is

obtained based on numerical analysis of a set of past recorded ground motions at the site under consideration or other sites

with similar soil conditions. The structure force–displacement relation is taken to possess an elastic–plastic behavior. The

resulting nonlinear optimization problem is tackled by using the sequential quadratic optimization method. The study,

also, examines influences of the structure yield strength and damping ratio on the derived earthquake load and the

associated structure response. Issues related to the time-variation of various energy forms dissipated by the inelastic system

are also explored. The proposed formulation is demonstrated with reference to the inelastic response analysis of a frame

structure driven by a single component of earthquake load.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of modelling earthquake ground motions as design inputs for engineering structures has
received significant research attention worldwide. The present practice is to use the method of design response
spectra, the time history analysis or the method of random vibration. The recent paper by Bommer and
Acevedo [1] provides a critical review on the use of real earthquake accelerograms as inputs to dynamic
analysis of engineering structures. On the other hand, the method of critical earthquake load modelling has
been established, during the last three decades, as a counterpart to these methods. This method relies on the
fact that, for many parts of the world, available data on strong earthquake ground motion is either
inhomogeneous or insufficient. The method of critical earthquake loads is a powerful tool for predicting
forthcoming earthquake accelerations for sites lacking information on earthquake ground motion. It may be
noted that one of the important aspects which contributes significantly to damage of structures is the resonant
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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nature of earthquake ground motion. This feature has been observed in actual recorded ground motions. For
instance, the Fourier spectra of the first horizontal component of the San Fernando 1971 earthquake and
Hyogoken-Nanbu 1995 Japan earthquake are shown in Fig. 1. It is obvious from this figure that both
accelerograms exhibit resonant nature at very few frequencies. The influence of the site soil characteristics, in
terms of dominant frequency, Fourier amplitude and frequency bandwidth of the ground motion is apparent
in each of these records. Structures having their fundamental natural frequency close to the dominant
frequency of any of these accelerograms can be expected to produce high responses. The method of critical
earthquake excitations provides the worst case scenario that can happen to the structure at a given site.
Accordingly, this method accounts for the uncertainties associated with the specification process of
earthquake loads as design inputs for structures. On the other hand, it is well known that modelling structural
nonlinear behavior is of central importance in earthquake engineering. It is, thus, of interest to investigate the
development of the method of critical earthquake load modelling to structures deforming into inelastic stage.
This is particularly true when dealing with dynamic analysis of structures driven by extreme loads as is the case
with critical earthquake loads.

Early works on modelling critical earthquake loads has been carried out by Drenick [2], Shinozuka [3] and
Iyengar [4]. An extensive overview of the development of this method is reported by Takewaki [5], Abbas and
Manohar [6] and Abbas [7]. This method can be developed within deterministic or probabilistic frameworks.
In the deterministic approach, the earthquake load is defined as an acceleration time history or in terms of
response spectra. In the probabilistic approach, the earthquake ground motion is modelled as a random
process. Regardless of the framework adopted, critical earthquake loads depend upon the structure
considered, the site soil conditions beneath the structure and the constraints imposed on the earthquake signal.
In implementing this method, the earthquake load is taken to be known only partially and an inverse dynamic
problem is solved to compute the unknown information on the seismic input, such that, a pre-selected damage
variable of the structure is maximized. At the same time the computed load, termed as ‘critical’ excitation,
satisfies a set of constraints that impart known features of real earthquake ground motion. Drenick [2] was the
first to introduce the method of critical excitations to the field of earthquake engineering within the framework
of deterministic analysis. He considered maximizing the dynamic response of linear single-degree-of-freedom
systems driven by ground acceleration and showed that the critical excitation for such systems, under a
constraint on total energy, is the impulse response function reversed in time. Shinozuka [3] improved
Drenick’s approach by introducing an upper bound on the Fourier transform of the ground acceleration.
Iyengar [4] incorporated the non-stationarity trend and total duration of recorded ground acceleration in
deriving critical earthquake loads. The modelling of random critical earthquake loads, for linear structures,
was introduced by Iyengar and Manohar [8]. These authors modelled the ground acceleration as a non-
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Fig. 1. Fourier amplitude spectra for recorded ground accelerations. (a) San Fernando 1971, N69W, (b) Hyogoken-Nanbu 1995, NIS0

(24,25).
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stationary Gaussian random process by multiplying a known envelope function by a stationary random
process of unknown power spectral density function. They obtained the power spectral density function of the
stationary part by maximizing the structure response variance under a constraint on the average total energy
of the input. Abbas and Manohar [6] modelled critical earthquake loads for linear structures within
deterministic and probabilistic frameworks. These authors investigated the realism of new proposed
constraints in each framework. This study showed that the constraints on upper and lower bounds on the
Fourier spectra of the ground acceleration in the deterministic framework and the constraint on the entropy
rate in the probabilistic model are crucial in developing realistic critical earthquake loads.

While the problem of modelling critical earthquake loads for linear structures is widely studied, the
determination of critical earthquake excitations for nonlinear structures, on the other hand, has been studied
to a very limited extent in the existing literature. Given that the treatment of structure nonlinearities is of
central importance in earthquake-resistant design, it is, thus, of significant interest to develop methods for
computing critical earthquake excitations for structures deforming into their inelastic range. Iyengar [9]
studied the problem of deriving critical earthquake loads for a class of nonlinear single-degree-of-freedom
systems by imposing a constraint on the input total energy. The force–deformation relation, in this study, was
modelled using Duffing oscillators. Drenick [10] extended his earlier study on linear structures to nonlinear
structures using equivalent linearization. He showed that the critical excitation for a nonlinear system is again,
except for a constant factor, the time reversed impulse response function of the linearized system.
Philippacopoulos and Wang [11] developed critical inelastic response spectra using recorded ground
accelerograms as basis functions in a series representation for the critical seismic excitation. Westermo [12]
defined critical response in terms of input energy to the system and determined critical excitations for
elastic–plastic and hysteretic single-degree-of-freedom systems using calculus of variations. For linear systems
he showed that critical inputs are harmonic and derivable from the harmonically excited response functions of
the system. On the other hand, critical loads for inelastic systems were not harmonic and at low frequencies the
response is significantly larger than the harmonically excited response. Notwithstanding this, the critical
excitations computed in these studies do not possess realistic characteristics of actual earthquake loads, and,
thus cannot be considered as realistic models for earthquake accelerograms. A similar study to that reported
by Westermo was carried out by Pirasteh et al. [13]. These authors computed the critical excitations for
inelastic multi-story frame structures under deterministic earthquake inputs. The response variable adopted
for maximization was chosen as the cumulative inelastic energy dissipation or sum of inter-story drifts. The
objective functions, in this study, were evaluated using approximate methods to reduce the computational
costs of the nonlinear dynamic response analysis. Recently, Takewaki [14,15] has developed critical input
power spectral density function models for earthquake inputs to single-degree-of-freedom and multi-degree-
of-freedom elastic–plastic systems. This author utilizes the method of statistical linearization to approximately
evaluate the structure response. The variable of optimization in these two studies has been the sum of the
response standard deviations of inter-story drifts normalized to yield drifts. More recently, Abbas and
Manohar [16] have developed a reliability-based framework for determining random critical earthquake loads
for nonlinear structures. This study integrates methods of structural reliability analysis, response surface
modelling and nonlinear programming in computing seismic inputs for structures having cubic
force–displacement relations. The damage variable was adopted as the structure reliability index.

The present study addresses the problem of modelling critical earthquake inputs for inelastic structures. The
earthquake load is modelled as a deterministic time history which is expressed in terms of a Fourier series, of
unknown coefficients, that is modulated by an enveloping function. While earlier studies on modelling
deterministic critical earthquake loads [6,7] treat the envelope function as being a known function, the present
study, on the other hand, considers the envelope parameters as unknown quantities to be optimally
determined. The coefficients of the series representation and the parameters of the envelope function are
determined such that the structure inelastic response is maximized subject to a set of predefined constraints.
The constraints invoked on the earthquake signal are taken to reflect known characteristics of actual recorded
ground motions. Specifically, the constraints include upper bounds on the total earthquake energy and peak
values of ground acceleration, velocity and displacement. Upper and lower limits on the Fourier spectra of the
ground acceleration are also considered. The constraints, also, include mathematical bounds on the
parameters of the envelope function. The structure force–displacement relation is taken to possess
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elastic–plastic characteristic. The resulting nonlinear optimization problem is solved by using the sequential
quadratic optimization method. Since, to the best of author’s knowledge the influence of yield strength and
damping ratio on derived critical earthquake excitations has not been studied earlier, the present study
examines these aspects. The study, also, tackles issues related to dissipated energy by the inelastic system.
Numerical illustrations on modelling critical earthquake loads for an elastic–plastic frame structure located at
a firm soil site are provided.
2. Seismic response of inelastic single-degree-of-freedom structures

The equation of motion governing the relative displacement response uðtÞ of a single-degree-of-freedom
system subject to a single component of earthquake ground motion €ugðtÞ (see Fig. 2(a)) is well known to be
given by

m €uðtÞ þ c _uðtÞ þ f sðtÞ ¼ �m €ugðtÞ, (1)

where m; c, are, respectively, the mass and damping of the single-degree-of-freedom system and f sðtÞ is the
restoring force in the spring. The above equation of motion may describe the dynamic response analysis of a
single-story frame structure or a piping system under a uniform ground motion €ugðtÞ. For linear structural
behavior the restoring force f sðtÞ is a linear function of the displacement response uðtÞ and the spring stiffness
coefficient k. Whereas, in the more general case, when structural nonlinearities are considered, this force is a
nonlinear function of the structure response. For instance, Fig. 2(b) depicts the nature of f sðtÞ for nonlinear
systems with force–displacement characteristic modelled using elastic–plastic behavior. Herein, the restoring
force is not only a function of the displacement response but depends on the velocity response as well.
Therefore, for nonlinear dynamical systems with elastic–plastic characteristics, the above equation of motion
may be re-written as

m €uðtÞ þ c _uðtÞ þ f sðu; _uÞ ¼ �m €ugðtÞ. (2)

It may be noted that, for systems governed by the above equation of motion, the force–deformation relation is
no longer a single-valued relation. Thus, for a displacement uðtiÞ at time ti the resisting force depends upon
prior history of motion of the system and whether velocity response _uðtiÞ is increasing or decreasing. In the
present work, damping is taken to be viscous, and, also, it is assumed that system starts from rest. While, it is
possible to treat damping as being nonlinear, the present study, however, does not consider this aspect. It is
intended in this study to focus on the complicating features arising due to inelastic structural behavior. The
above equation of motion can be recast as

€uðtÞ þ 2znon _uðtÞ þ o2
nuyf̄ sðu; _uÞ ¼ � €ugðtÞ, (3)
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Fig. 2. (a) Inelastic single-degree-of-freedom system, (b) elastic–plastic behavior.
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where zn ¼ c=2
ffiffiffiffiffiffiffi
km
p

is the damping ratio, on ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the natural frequency for the linear system or for the

elastic–plastic system undergoing small deformations (i.e. upuy) and uy is the yield displacement. It may be
recalled that, at larger amplitudes the natural vibration period is not defined for inelastic systems. The
function f̄ sðu; _uÞ may be defined as the spring restoring force in a dimensionless form. Referring to the above
equation, it may be noted that for a given earthquake acceleration €ugðtÞ, the displacement response depends on
the natural frequency on, the damping ratio zn and the yield displacement uy (see Fig. 2(b)). Herein, the yield
displacement uy is defined as f y=k where f y is the yield strength. The dynamic analysis of inelastic structures
governed by the above equation of motion can be carried out directly by solving this equation. Alternatively,
the dynamic analysis of these systems can be characterized in terms of the inelastic displacement response
normalized to the yield displacement. This dimensionless quantity is known as the ductility factor. Thus,
defining this factor as mðtÞ ¼ uðtÞ=uy and substituting into Eq. (3), one obtains

€mðtÞ þ 2znon _mðtÞ þ o2
nf̄ sðm; _mÞ ¼ �o

2
n

€ugðtÞ

ay

. (4)

It follows from this equation of motion that the ductility factor for systems driven by a time-variant dynamical
load is also a time-variant quantity. It may be observed that the expressions €uðtÞ ¼ uy €mðtÞ and _uðtÞ ¼ uy _mðtÞ
were employed in deriving the above equation. The constant ay ¼ f y=m, appearing on the right side of this
equation, can be interpreted as the acceleration of the mass necessary to produce the yield force f y and f̄ sðm; _mÞ
is the force–deformation relation in dimensionless form. Furthermore, the acceleration ratio €ugðtÞ=ay is the
ratio between the ground acceleration and a measure of the yield strength of the structure. For instance,
Eq. (4) implies that doubling the ground acceleration €ugðtÞ will produce the same response mðtÞ as if the yield
strength had been halved. The response analysis of inelastic systems governed by the above equation of
motion (or Eq. (3)) is generally carried out using numerical integration techniques.
3. Critical earthquake loads for inelastic single-degree-of-freedom structures

The formulation for modelling critical earthquake excitations for elastic–plastic single-degree-of-freedom
structures is presented in this section. As a first step, the ground acceleration appearing on the right side of
Eq. (4) is represented as a product of a Fourier series and an enveloping function as follows:

€ugðtÞ ¼ eðtÞ
XNf

i¼1

Ai cosoitþ Bi sinoit

" #
, (5)

where Ai;Bi, are 2Nf unknown constants and oi, i ¼ 1; 2; . . . ;Nf , are the frequencies presented in the ground
acceleration €ugðtÞ which are selected such that they span satisfactory the frequency range ðo0;ocÞ of €ugðtÞ. The
function eðtÞ represents the enveloping function that imparts transient nature to the earthquake acceleration.
In the present study, the envelope function eðtÞ is taken to be given by [17]

eðtÞ ¼
expð�a1tÞ � expð�a2tÞ

max½expð�a1tÞ � expð�a2tÞ�
; a24a140, (6)

where a1 and a2 are the parameters of the enveloping function. The maximum value of the envelope
function as per the above expression is unity. It may be recalled that earlier studies [6,7] have considered
these parameters as known variables. In the present study, these parameters are treated as unknown quan-
tities to be optimally determined. Accordingly, in constructing critical earthquake excitations for
elastic–plastic systems, it is assumed that Ai, Bi, i ¼ 1; 2; . . . ;Nf , a1 and a2 are unknowns. Furthermore,
the information on energy E, peak ground acceleration (PGA) M1, peak ground velocity (PGV) M2, peak
ground displacement (PGD) M3, upper bound Fourier amplitude spectra (UBFAS) M4ðoÞ and lower
bound Fourier amplitude spectra (LBFAS) M5ðoÞ are taken to be available which enables the formulation of
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the following constraints: Z 1
0

€u2
gðtÞdt

� �1=2
pE,

max
0oto1

j €ugðtÞjpM1,

max
0oto1

j _ugðtÞjpM2,

max
0oto1

jugðtÞjpM3,

M5ðoÞpVgðoÞpM4ðoÞ. ð7Þ

The function VgðoÞ appearing in the above equation represents the Fourier transform of the ground
acceleration €ugðtÞ. In addition to the above set of constraints, mathematical bounds on the parameters of
enveloping function are also considered. These constraints are given as

a1lpa1pa1u,

a2lpa2pa2u. ð8Þ

It may be remarked that the positivity condition on a1 and a2 (see Eq. (6)) is implicitly satisfied if the above
bounds are appropriately selected. To proceed further, the ground velocity and displacement should be
computed. Thus, making use of Eq. (5), one obtains

_ugðtÞ ¼
XNf

i¼1

Z t

0

eðtÞ½Ai cosoitþ Bi sinoit�dtþ C1, (9)

ugðtÞ ¼
XNf

i¼1

Z t

0

eðtÞðt� tÞ½Ai cosoitþ Bi sinoit�dtþ C1tþ C2. (10)

The constants C1 and C2 appearing above are found using the conditions [18]

ugð0Þ ¼ 0; lim
t!1

_ugðtÞ ! 0. (11)

This leads to

C2 ¼ 0; C1 ¼ �
XNf

i¼1

Z 1
0

eðtÞ½Ai cosoitþ Bi sinoit�dt. (12)

Subsequently, the constraints listed in Eqs. (7) and (8) can be expressed in terms of the unknown variables An,
Bn, n ¼ 1; 2; . . . ;Nf , a1 and a2 as follows:

XNf

m¼1

XNf

n¼1

AmAnI1ðom;onÞ þ AmBnI2ðom;onÞ þ BmAnI3ðom;onÞ þ BmBnI4ðom;onÞ

" #1=2
pE,

max
0oto1

expð�a1tÞ � expð�a2tÞ

max½expð�a1tÞ � expð�a2tÞ�

XNf

n¼1

½An cosontþ Bn sinont�

�����
�����pM1,

max
0oto1

XNf

n¼1

Z t

0

expð�a1tÞ � expð�a2tÞ
max½expð�a1tÞ � expð�a2tÞ�

½An cosontþ Bn sinont�dt

�����
�
XNf

n¼1

Z 1
0

expð�a1tÞ � expð�a2tÞ
max½expð�a1tÞ � expð�a2tÞ�

½An cosontþ Bn sinont�dt

�����pM2,
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max
0oto1

XNf

n¼1

Z t

0

expð�a1tÞ � expð�a2tÞ
max½expð�a1tÞ � expð�a2tÞ�

ðt� tÞ½An cosontþ Bn sinont�dt

�����
�t
XNf

n¼1

Z 1
0

expð�a1tÞ � expð�a2tÞ
max½expð�a1tÞ � expð�a2tÞ�

½An cosontþ Bn sinont�dt

�����pM3,

M5ðoÞp
XNf

n¼1

AnI1nðoÞ þ BnI2nðoÞ

�����
�����pM4ðoÞ,

a1lpa1pa1u,

a2lpa2pa2u, (13)

where

I1ðom;onÞ ¼

Z 1
0

expð�a1tÞ � expð�a2tÞ
max½expð�a1tÞ � expð�a2tÞ�

� �2
cosomt cosontdt,

I2ðom;onÞ ¼

Z 1
0

expð�a1tÞ � expð�a2tÞ
max½expð�a1tÞ � expð�a2tÞ�

� �2
cosomt sinontdt,

I3ðom;onÞ ¼

Z 1
0

expð�a1tÞ � expð�a2tÞ
max½expð�a1tÞ � expð�a2tÞ�

� �2
sinomt cosontdt,

I4ðom;onÞ ¼

Z 1
0

expð�a1tÞ � expð�a2tÞ
max½expð�a1tÞ � expð�a2tÞ�

� �2
sinomt sinontdt,

I1nðoÞ ¼
Z 1
0

expð�a1tÞ � expð�a2tÞ
max½expð�a1tÞ � expð�a2tÞ�

cosont expð�jotÞdt,

I2nðoÞ ¼
Z 1
0

expð�a1tÞ � expð�a2tÞ
max½expð�a1tÞ � expð�a2tÞ�

sinont expð�jotÞdt; j ¼
ffiffiffiffiffiffiffi
�1
p

. ð14Þ

To determine the quantities E;M1;M2;M3;M4ðoÞ and M5ðoÞ it is assumed that a set of earthquake records
denoted by f€vgiðtÞg

Nr

i¼1 are available for the site under consideration or from other sites that are geologically
similar to the given site. The values of intensity, peak values of acceleration, velocity and displacement are
obtained for each of these records. The highest of these values across the ensemble of the records are taken to
be the respective estimates of E;M1;M2 and M3. The set of available records f€vgnðtÞg

Nr

n¼1 are further
normalized such that the energy of each record is set to unity, and these normalized records are denoted by
f €̄vgiðtÞg

Nr

i¼1. The bounds M4ðoÞ and M5ðoÞ are obtained as

M4ðoÞ ¼ E max
1pipNr

jV̄ giðoÞj,

M5ðoÞ ¼ E min
1pipNr

jV̄ giðoÞj, ð15Þ

where the function V̄ giðoÞ, i ¼ 1; 2; . . . ;Nr denotes the Fourier transform of the ith normalized accelerogram
€̄vgiðtÞ and these transforms are computed using the fast Fourier transform. It may be noted that the
idea of introducing an upper bound on the Fourier amplitude of the ground motion has been considered
earlier by Shinozuka [3], Baratta et al. [19] and, also, in a probabilistic setting, by Takewaki [14,15]. On the
other hand, the lower bound on the Fourier amplitude spectra was considered in Ref. [6]. It may also be
remarked that the assumption on availability of past records f€vgnðtÞg

Nr

n¼1 is similar to the assumption made by
Drenick [20]. While the earlier workers [11,20,21] employed these records as basis functions, in this study,
these records are used to derive the constraints that the critical excitations need to satisfy. The quantification
of the bounds of the parameters of the enveloping function a1l , a1u, a2l and a2u are made available based on a
numerical analysis of the set of past recorded accelerograms €vgiðtÞ, i ¼ 1; 2; . . . ;Nr. To quantify these
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constraint limits, each earthquake accelerogram €vgiðtÞ, i ¼ 1; 2; . . . ;Nr is assumed to be represented by the
form of Eq. (5). The associated envelope function to this record is taken to be given by Eq. (6). Subsequently,
the parameters of the envelope function a1 and a2 are determined such that they match the transient trend of
the ground acceleration. The constraint bounds a1u and a2u are computed as the highest values across
the ensemble fa1i; a2ig

Nr

i¼1, respectively. Similarly, a1l and a2l are taken as the lowest values of fa1i; a2ig
Nr

i¼1,
respectively.

Finally, the problem of deriving critical earthquake loads for elastic–plastic structures can be posed as
determining the optimization variables x ¼ ½A1;A2; . . . ;ANf

;B1;B2; . . . ;BNf
; a1; a2�t such that the structure

inelastic response (as given in Eq. (4)) is maximized subject to the constraints listed in Eq. (13). This
constitutes a constrained nonlinear optimization problem and is tackled by using the sequential quadratic
programming (SQP) method [22]. Herein, the optimization problem is solved iteratively starting from a pre-
specified initial guess for the vector of the optimization variables x. Subsequently, the optimization algorithm
performs a sensitivity analysis, at each iteration, searching for new values for the vector of the optimization
variables x. The optimization code converges to the optimal solution when the following criteria on the
objective function and optimization variables are satisfied:

jmj � mj�1jp‘1,

jxij � xi�1jjp‘2; i ¼ 1; 2; . . . ;Nf þ 2. ð16Þ

Herein, j represents the iteration number and xij indicates the ith optimization variable at the jth iteration. The
structure inelastic response is determined via numerical integration of the equation of motion by using the
Newmark-b method. The details of the steps involved in the computation of the optimal earthquake loads and
the corresponding inelastic response of the structure can be summarized as follows:
(1)
 Define the structure parameters m, c, k, the yield strength in tension and compression (f yt and f yc) and
determine the parameter ay ¼ f yt=m.
(2)
 Set the initial conditions mð0Þ and _mð0Þ and compute the corresponding quantity €mð0Þ from the equilibrium
of the equation of motion (4). Herein, the initial conditions uð0Þ ¼ 0 and _uð0Þ ¼ 0 and the transformation
mðtÞ ¼ uðtÞ=uyt are employed in determining mð0Þ and _mð0Þ.
(3)
 Select the time step Dt and calculate the constants of the Newmark-b method (a1 ¼ 1=bDt, a2 ¼ 1=2b,
a3 ¼ 1� ð1=4bÞ, a4 ¼ 1=bDt2).
(4)
 Determine the initial yield ductility points myt ¼ uðtÞjt¼tyt
=uyt ¼ 1 and myc ¼ uðtÞjt¼tyc

=juycj ¼ �1. Here, tyt

and tyc define the time points at which system starts to yield in tension and in compression, respectively.

(5)
 For t ¼ tj use the value of the parameter KEY to establish the elastic or plastic state of the structure

based on the following criteria:
� KEY ¼ 0 implies elastic behavior,
� KEY ¼ 1 implies plastic behavior in tension,
� KEY ¼ �1 implies plastic behavior in compression.
(6)
 Calculate the incremental effective force DF̄ j ¼ �ðo2
n=ayÞD €ugj þ ða1 þ 2a2znonÞ _mj þ ða2 � 2a3znonÞ €mj.
(7)
 Calculate the effective stiffness K̄ j ¼ o2
nkp þ a1znon þ a4. Here, kp ¼ k for elastic behavior ðKEY ¼ 0Þ

and kp ¼ 0 for plastic behavior (KEY ¼ 1 or �1).

(8)
 Compute the incremental displacement Dmj ¼ DF̄ j=K̄ j .

(9)
 Solve for the incremental quantity D _mj ¼ 2a1Dmj � a2 _mj þ a3Dt €mj .
(10)
 Calculate the quantities mjþ1 ¼ mj þ Dmj and _mjþ1 ¼ _mj þ D _mj.

(11)
 Set the new value for the parameter KEY as follows:
� When the system is behaving elastically at the beginning of the time step, then the parameter KEY ¼ 0
if mycomomyt, KEY ¼ 1 if m4myt and KEY ¼ �1 if momyc.
� When the system is behaving plastically in tension at the beginning of the time step, then the parameter
KEY ¼ 1 if _m40 and KEY ¼ 0 if _mo0.
� When the system is behaving plastically in compression at the beginning of the time step, then the
parameter KEY ¼ �1 if _mo0 and KEY ¼ 0 if _m40.
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(12)
 Compute €mjþ1 ¼ �ðo
2
n=ayÞ €ugjþ1 � 2znon _mjþ1 � o2

nf̄ sðmjþ1; _mjþ1Þ. Here, f̄ sðmjþ1; _mjþ1Þ is given as, 1� ðmj �

mjþ1Þ if KEY ¼ 0, 1 if KEY ¼ 1 and �1 if KEY ¼ �1.

(13)
 Repeat steps 5–12 for all discrete points of time (j ¼ 1; 2; . . . ;Np, and Np is the total number of discrete

points of time).

(14)
 The optimal normalized inelastic response is computed as mðtmÞ ¼ max1pjpNp

jmðtjÞj and the correspond-
ing set of optimization variables Ai, Bi, i ¼ 1; 2; . . . ;Nf , a1 and a2 defines the critical earthquake signal
(Eqs. (5) and (6)) and the associated critical inelastic response uðtÞ ¼ uymðtÞ.
4. Numerical results and discussions

To illustrate the formulation developed in the preceding section, the determination of optimal earthquake
excitations for an elastic–plastic one-story steel frame is demonstrated in this section. The frame structure has
a width L ¼ 9:14m, height h ¼ 6:25m and modulus of elasticity E ¼ 210GPa. The structure carries a total
load of 9:66� 103 N=m and columns are made of W8� 24 steel section. A similar structure was considered by
Wang et al. [23] within the context of seismic assessment of inelastic structures. Additionally, the frame
structure is taken to be located at a site with firm soil conditions and is subjected to a uniform earthquake
ground motion at both support points. For purpose of dynamic analysis, it is assumed that the girder is
sufficiently rigid to prevent rotation and that columns are massless. Accordingly, the frame structure is
modelled as an elastic–plastic single-degree-of-freedom system (see Fig. 2). The initial stiffness of columns is
computed to be 1:49� 105 N=m and the natural frequency of the elastic linear system is on ¼ 0:65Hz. A
modal viscous damping of 0.03 is considered. The yield strength of the spring force in tension and compression
is taken as 104 and �104 N, respectively. This, in turn, leads to defining yield displacements in tension and
compression as 0.0671 and �0:0671m, respectively.

4.1. Quantification of constraints

A set of 20 earthquake ground motions ðNr ¼ 20Þ is used to quantify the constraint limits E, M1, M2, M3,
M4ðoÞ, M5ðoÞ, a1l , a1u, a2l and a2u [24,25]. Table 1 summarizes relevant information, such as, Richeter’s
magnitude, peak values of ground acceleration, velocity and displacement and energy for each record. The table
contains, also, the envelope parameters a1 and a2 that reflect the transient nature of each acceleration (see Eqs. (5)
and (6)). These records include digitized information on ground acceleration, velocity and displacement and each
record is reported to be measured on firm soil. Based on numerical analysis of these records, the quantities of the
constraints appearing in Eq. (13) were computed as E ¼ 4:17m=s1:5, M1 ¼ 4:63m=s2 ð0:47gÞ, M2 ¼ 0:60m=s
and M3 ¼ 0:15m. The upper and lower bounds on the Fourier spectra M4ðoÞ and M5ðoÞ are shown in Fig. 3(a).
It may be noted that Nr ¼ 20 was seen to produce considerably smooth upper and lower bounds on the Fourier
coefficients of €ugðtÞ. The average dominant frequency of the ground accelerations is seen to be around 1.64Hz. The
bounds on the envelope function parameters were determined to be a1l ¼ 0:07, a1u ¼ 0:19, a2l ¼ 0:59 and
a2u ¼ 0:67. The envelope functions corresponding to these values are illustrated in Fig. 3(b). These values indicate
that the positivity constraint of the envelope parameters, and, the constraint a24a1 (see Eq. (6)) are implicitly
satisfied. The parameter b of the numerical integration algorithm is selected as 0.25. The time step Dt is taken as
0.005 s which was found to give satisfactory results in the numerical integration of the equation of motion.
Additionally, the convergence limits ‘1 and ‘2 were taken as 10�4 and 10�6, respectively. The frequency content for
€ugðtÞ is taken as (0–25)Hz. The resulting constrained nonlinear optimization problem is tackled by using the
sequential quadratic optimization algorithm ‘fmincon’ of the Matlab optimization toolbox [26]. As mentioned
earlier, this algorithm requires the specification of an initial guess for the vector of optimization variables x. In the
numerical calculations, alternative initial starting solutions, within the visible region, were examined and it was
found that all these guesses lead to the same optimal solution. Furthermore, in distributing oi, i ¼ 1; 2; . . . ;Nf in
the interval ðo0;ocÞ, (see Eq. (5)) it was found advantageous to select one of these oi to coincide exactly with the
structure natural frequency and also to place relatively more points within the modal half-power bandwidth. To
select the number of frequency terms Nf a parametric study was carried out and Nf ¼ 50 was found to give
satisfactory results. Accordingly, the total number of the optimization variables were 52.
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Fig. 3. Constraint bounds on ground acceleration. (a) Upper and lower Fourier bounds, (b) envelope function.
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4.2. Dissipated energy

To gain more insights into the nature of optimal earthquake loads computed, it is of interest to quantify
various forms of energy dissipated by the inelastic system. Several authors employed the energy dissipated by
the structure in characterizing response analysis of structures to dynamic loading [12,27–29]. These energy
terms can be quantified by integrating the structure equation of motion. Thus, the energy balance for the
inelastic system can be written as (see Eq. (2))Z u

0

m €uðtÞduþ

Z u

0

c _uðtÞduþ

Z u

0

f sðu; _uÞdu ¼ �

Z u

0

m €ugðtÞdu. (17)

The right side of the above equation represents the input energy to the structure since ground starts shaking
until it comes to rest. The first energy term of the left side is the kinetic energy EK ðtÞ of the mass associated
with its motion relative to the ground and is given as

EK ðtÞ ¼

Z u

0

m €uðtÞdu ¼

Z _u

0

m €uðtÞd _u ¼
m½ _uðtÞ�2

2
. (18)

The second term of the left side of Eq. (17) represents the energy dissipated by viscous damping EDðtÞ given by

EDðtÞ ¼

Z u

0

c _uðtÞdu ¼

Z t

0

c½ _uðtÞ�2 dt. (19)

The third term of Eq. (17) is the sum of the recoverable strain energy ESðtÞ and the energy dissipated by
yielding EY ðtÞ and are given as

ESðtÞ ¼
½f sðtÞ�

2

2k
,

EY ðtÞ ¼

Z u

0

f sðu; _uÞdu� ESðtÞ ¼

Z t

0

_uðtÞf sðu; _uÞdt� ESðtÞ. ð20Þ

The parameter k appearing in the above equation, is the initial stiffness of the inelastic system. In the present
study, the time-variation of energy terms given in Eqs. (18)–(20) are employed in quantifying and
characterizing various forms of energy dissipated by the inelastic system.
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4.3. Results and discussions

Alternative constraint scenarios considered in deriving critical seismic inputs are listed in Table 2. The
numerical results obtained for the elastic–plastic structure are presented in Figs. 4–8 and Table 3. The critical
earthquake load computed for constraint scenario 1 (see Table 2) is presented in Fig. 4. This figure depicts the
time history of the ground acceleration (Fig. 4(a)) and also the Fourier amplitude spectra of €ugðtÞ (Fig. 4(b)).
Similar results for constraint scenario 4 are presented in Fig. 5. The critical envelope function and the
convergence of the objective function, for case 4, are provided in Figs. 6(a) and (b), respectively. The
associated structure inelastic response is plotted in Fig. 7(a), and, the hysteresis loops for the restoring
force–displacement of the system is shown in Fig. 7(b). With an aim to investigate the influence of the
structure yield strength on the computed critical earthquake accelerations and the associated inelastic response
a parametric study was carried out. The yield strength was varied while other parameters are kept unchanged
and the earthquake acceleration is computed for each value of yield strength by re-solving the same
optimization problem. Fig. 8 shows part of these results. A similar study to investigate the effect of the
variation of the damping ratio on the structure response was also carried out. The results of this parametric
study is presented in Table 4. The time-variation of different energy forms dissipated by the inelastic system
are provided in Fig. 9(a). To understand the influence of modelling the structure inelastic behavior on critical
earthquake loads, critical €ugðtÞ for the elastic linear structure were also determined. Some of these results
are provided in Figs. 9–11. Based on extensive study of the numerical results, the following observations are
made:
(1)
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It is observed that the magnitude of critical inelastic response produced and frequency content of critical
excitations are strongly dependent on constraints imposed (see Figs. 4 and 5 and Table 3). If available
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Fig. 4. Critical acceleration €ugðtÞ for inelastic system; case (1). (a) Time history, (b) Fourier amplitude spectra.
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Fig. 5. Critical acceleration €ugðtÞ for inelastic system; case (4). (a) Time history, (b) Fourier amplitude spectra.
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Fig. 6. Critical envelope function and convergence of objective function; case (4). (a) Envelope function, (b) convergence of objective

function.
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knowledge on future earthquake is limited to energy and PGA (case 1), the critical excitation is highly
resonant and response produced is overly conservative (see Fig. 4(b) and Table 3). Additional constraints
on bounds on Fourier amplitude spectra (case 4) makes the critical excitations realistic in terms of their
frequency content and responses that they produce. To see this, the critical response produced by
alternative constraint scenarios can be compared with the highest inelastic displacement of 0.10565m that
is produced by the recorded motions f€vgnðtÞg

Nr

n¼1. Thus for the case of constraints on energy and PGA (case
1), the critical response is 4.17 times the highest response produced by past records while, for case 4 this
ratio reduces to 1.82. It is also observed that the critical ground acceleration for the inelastic structure
possesses a peak amplitude at a frequency close to the natural frequency of the elastic system (see Figs. 4(b)
and 5(b)). This peak, however, is seen to be significantly smaller than that observed for the case of the
elastic structure (Fig. 10(b)). Notwithstanding this, it is observed that the dominant frequency of
the ground acceleration is close to the average dominant frequency of past record ground motions (see
Fig. 5(b)).
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Fig. 7. Response of inelastic system; case (4). (a) Inelastic normalized displacement, (b) restoring force–displacement hysteretic loops.
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Fig. 8. Influence of yield strength on inelastic system; case (4). (a) Normalized response, (b) energy dissipated by yielding.

Table 3

Dynamic response of elastic–plastic system for alternative constraint scenarios

Case 1 2 3 4

mmax 6.58 5.12 4.89 2.86

umax (m) 0.4410 0.3427 0.3276 0.1922

up (m) 0.1203 0.1032 0.0968 0.0533

A.M. Abbas / Journal of Sound and Vibration 296 (2006) 949–967962
(2)
 The convergence rate of the objective function with respect to the number of iterations is seen to be faster
for the elastic structure compared to that of the inelastic structure. Thus, for case 4, the objective function
for the linear case reaches initial convergence to the optimal solution within about 1500 iterations, the
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Table 4

Dynamic response of elastic–plastic system for alternative damping ratios, case 4

z 0.02 0.03 0.05

mmax 3.29 2.86 2.42

umax (m) 0.2208 0.1922 0.1624

up (m) 0.0718 0.0533 0.0315
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Fig. 9. Time-variation of dissipated energy; case (4). (a) Elastic–plastic system, (b) linear elastic system.
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Fig. 10. Critical acceleration €ugðtÞ for linear system; case (4). (a) Time history, (b) Fourier amplitude spectra.
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corresponding number of iterations when inelastic behavior is considered is more than 8000. The final
convergence of the objective function for the elastic system is achieved within about 3500 iterations, while
in the case inelastic system, the final convergence is achieved within around 15 000 iterations (see Figs. 6(b)
and 11(b)). It was, also, observed that the CPU time necessary for the convergence of the objective
function in the case of the inelastic system is around four times that for the elastic system.
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Fig. 11. Elastic system; case (4). (a) Critical displacement response, (b) convergence of objective function.
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(3)
 It is evident from the numerical results on critical ductility factor mðtÞ and associated displacement response
for the inelastic structure that the time variation of the structure deformation differs from that of the elastic
system (see Figs. 7(a) and 11(a)). Unlike the elastic system, the inelastic system after it has yielded does not
oscillate about its initial equilibrium position. Yielding causes the structure to drift from its initial
equilibrium position and system oscillates around a new equilibrium position until this gets shifted by
another yielding. Accordingly, after the ground stops shaking, the structure comes to rest at a position
different from its initial equilibrium position. In other words, the structure permanent deformation remains
after ground stops shaking. For instance, the permanent displacement response of the structure, for case 4,
was seen to be 0.0533m. Additionally, the maximum value of the structure deformation and the point at
which it occurs are different for the inelastic system compared to those of the elastic system. Thus, the peak
response for the inelastic structure is around 0.1922m while the corresponding value for the elastic system
was 0.4705m. These peaks occur at t ¼ 6:58 and 7.96 s for the inelastic and elastic systems, respectively. The
maximum value of the ductility factor was computed to be about 2.86.
(4)
 The influence of the structure yield strength on the computed earthquake acceleration is seen to be
significant. Thus, the decrease in the structure yield strength, f y, is seen to spread the amplitude of the
fourier spectra of the critical earthquake acceleration across higher frequencies. This was observed to be
compensated with a decrease in the peak of the Fourier amplitude of €ugðtÞ at the structure natural
frequency. Furthermore, it is also observed that for lower yield values the structure yields more frequently
and for longer intervals (see Fig. 8(a)). The structure dissipated energy, due to yielding, is seen to increase
for higher yield strength (see Fig. 8(b)). Additionally, with higher yielding strength, the structure ductility
factor is seen to reduce. Thus, for case 4, the ductility factor associated with the yielding limits 104, 2� 104

and 3� 104 N were 2.86, 2.32 and 2.11, respectively. The associated peak responses were 0.1922, 0.2885
and 0.4216m, respectively. The corresponding permanent deformation of the structure after ground stops
shaking are 0.0533, 0.0741 and 0.0874m, respectively.
(5)
 The input energy to the inelastic system due to the earthquake acceleration €ugðtÞ is, primarily, dissipated by
yielding and damping of the structure (see Fig. 9(a)). Unlike the elastic system, the kinetic and recoverable
strain energy terms for the inelastic system are small and diminish near the end of the ground shaking (Fig.
9). The energy dissipated by yielding is significantly higher than that dissipated by damping. Furthermore,
viscous damping dissipates less energy from the inelastic system compared to that for the elastic system.
This is not surprising given that velocity response is higher for the elastic system. It is also obvious that
input energy to the inelastic system differs from the energy input to the linear elastic system. The repeated
yielding of the elastic–plastic system indicates the level of the structure damage and the associated
permanent deformation caused to it.
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(6)
Tab

Sens

Para

�1
�2

aV
The influence of the variation of the damping ratio on the structure inelastic deformation was seen to be
significant. As might be expected with increasing the damping ratio, the structure maximum inelastic
response is seen to reduce (see Table 4). Thus, for case 4, the structure maximum inelastic deformation was
computed to be 0.1922m for z ¼ 0:03. This value reduces to 0.1624 if z ¼ 0:05. The ductility factor reduces
from 2.86 to 2.42 due to increase of damping ratio from 0.03 to 0.05. Furthermore, it was also seen that the
permanent deformation of the inelastic system reduces for higher values of damping ratio (see Table 4).
In order to study the sensitivity of critical response with respect to variations in the constraint quantities E,
M1, M2, M3, M4ðoÞ, M5ðoÞ, a1l , a1u, a2l and a2u, a sensitivity analysis using numerical methods is carried out.
To study the sensitivity of critical response with respect to a specific parameter, the value of this parameter is
changed by 1% while other parameters are held fixed at their respective specified values. The optimization
problem is re-solved with this change in place. This leads to the calculation of the percentage change in the
critical response, denoted by �1, and also the ratio of change in the response value to the change in the
parameter value, denoted by �2. Table 5 summarizes the results of this calculation for constraint scenario 4. It
can be observed from this table that changes in the energy constraint and bounds on the fourier spectra alter
the optimum solution considerably compared to similar changes in other parameters. The optimum solution is
less sensitive to constraints on peak values of acceleration, velocity and displacement and bounds on the
envelope parameters.

Finally, with a view to investigate the effect of the natural frequency of the structure on the derived critical
ground acceleration and associated structure inelastic response, an additional study is carried out. Herein, the
structure natural frequency was varied (by varying the structure mass while stiffness is kept unchanged) and
the critical acceleration is computed. These results are presented in Fig. 12. It follows from this figure that the
natural frequency of the linear system significantly influences the computed critical €ugðtÞ and the associated
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Fig. 12. Normalized inelastic response versus natural frequency; case (4).

le 5

itivity analysis of objective function to constraint parameters for inelastic structure, case (4)

meter E M1 M2 M3 M4ðoÞ M5ðoÞ a1l a1u a2l a2u

0.19 0.07 0.04 0.03 0.11 0.08 0.03 0.05 0.04 0.06

11.98 4.23 17.53 52.60 61.55a 175.33a 112.71 69.21 17.83 23.55

alues are calculated at the frequency at which M4ðoÞ and M5ðoÞ are at respective maxima.
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structure inelastic response. If the structure fundamental natural frequency is close to the dominant frequency
of the site under consideration, high inelastic deformation is produced.

5. Conclusions

The modelling of earthquake ground motion as design inputs for inelastic single-degree-of-freedom
structures is studied. The earthquake acceleration is expanded in terms of a Fourier series, of unknown
coefficients, that is modulated by an enveloping function. The coefficients of the series representation and the
envelope parameters are computed such that the structure inelastic response normalized to yield displacement
is maximized under a set of predefined constraints. These constraints are taken to reflect known characteristics
of actual recorded ground motions at the site under consideration. Particularly, constraints on the total energy
of the earthquake signal, upper and lower bounds on the Fourier coefficients of the ground acceleration are
considered. The constraints, also, contain upper limits on PGA, PGV and PGD and mathematical bounds on
the envelope parameters. The structure force–displacement relation is taken to possess an elastic–plastic
behavior. The resulting nonlinear optimization problem is solved by using the sequential quadratic
optimization method. Several aspects which are relevant to the problem are investigated. It is shown that
critical earthquake loads for the inelastic structure differ from that computed for the same structure with
linear structural behavior. Similarly, the time variation of the structure deformation differs from that of the
elastic system. Unlike the elastic system, the inelastic system after it has yielded does not oscillate about its
initial equilibrium position. Yielding causes the structure to drift from its initial equilibrium position and
system oscillates around a new equilibrium position until this gets shifted by another yielding. The present
study, also, examined influences of the variations of the structure yield strength and damping ratio on the
computed earthquake load and associated structure response. It was found that for lower yield values
the structure yields more frequently and for longer intervals. Additionally, with higher yielding strength, the
structure maximum response increases. The influence of damping ratio was seen to be significant in reducing
the structure inelastic deformation. It is, also, shown that the inelastic structure dissipates the input energy,
mainly, through yielding and damping. Furthermore, the time-variation of alternative energy forms for the
inelastic structure differ from those for the linear structure.

The proposed formulation was demonstrated with reference to seismic inelastic response analysis of a simple
frame structure. Given the complexity of engineering structures, it is thus of significant interest to extend this
formulation to multi-degree-of-freedom structures. This can be achieved by integrating tools of nonlinear
finite element analysis and nonlinear optimization techniques. It is also of significance to investigate effects of
treating nonlinear damping models in computing critical earthquake inputs for inelastic structures. A natural
development of the method of critical earthquake excitations, presented in this work, is the seismic-resistant
design of inelastic structures subjected to system-dependent critical loads. Herein, information on the seismic
load and, also, on the structure parameters would be specified partially.
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